Stereocontrol by Lewis Acids in the Hetero-Diels-Alder Reaction Leading to a Key 1β -Methylcarbapenem Intermediate

Masaki Nishiuchi, Keisuke Honda, and Takeshi Nakai* Department of Chemical Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152

(Received January 22, 1996)

The Lewis acid-promoted versions of the cycloaddition reaction between methyl 2-(benzoylamino)methylene-3-oxobutanoate and methylketene diethyl acetal are shown to provide a 1β -methylcarbapenem intermediate with high diastereoselectivity and moderate enantioselectivity.

Since the Merck group discovered that the introduction of 1β methyl group onto the carbapenem skeleton remarkably enhanced the chemical and metabolic stability, 1 a number of synthetic methods for the key 1β -methylcarbapenem intermediate 1 have been reported.² While most of the reported methods employ the optically active 4-acetoxy-2-azetidinone as the precursor, the ICI group has reported an interesting alternative route to 1 which involves as the key step the thermal hetero-Diels-Alder reaction between 2-(acylamino)methylene-3-oxobutanoates (e.g, 2) and ketene acetal 3 (Scheme 1).3 However, the thermal cycloaddition of 2 and 3 is non-diastereoselective to give a nearly 1:1 mixture of the cis- and trans-cycloadducts 4, of course, in racemic forms.^{3,4} Thus, we became interested in stereocontrol of the important cycloaddition process by using appropriate Lewis acids to obtain the desired cycloadduct trans-4 in a highly diastereoand enanioselective fashion. Reported herein are the Lewis acidpromoted versions of the hetero-Diels-Alder reaction which afford trans-4 in high diastereoselectivity and moderate enantioselectivity.

Scheme 1.

First, we examined the diastereoselectivity in the cycloaddition between 2 and 3 promoted by a variety of *achiral* Lewis acids. Since the cycloaddition was found to proceed thermally even at -30 °C,⁴ the Lewis acid-promoted reactions were carried out in dichloromethane at -78 °C where no reaction occurred in the *absence* of Lewis acids. Table 1 summarizes the results thus obtained. The *cis/trans* ratios were determined by ¹H NMR analysis, and the relative stereochemistry of *cis*- and *trans*-4, separated by column chromatography (silica gel, hexane/ether =

Table 1. The Lewis acid-promoted reactions of 2 and 3a

Entry	Lewis Acid	Time / h	Yield / %	cis-4:trans-4 ^h
1	Et ₂ Zn	44	80	24:76
2	$ZnBr_2$	10	100	25:75
3	Ti(O ⁱ Pr) ₂ Cl ₂	45	43	15:85
4	Et ₃ Al	2	100	27:73
5	EtAI O	28	73	11 : 89
6	MeAI O	2	76	11 : 89
7	EtAI O-O)2	16	77	15:85

*a*All reactions were run in CH₂Cl₂ at -78 °C using 10 equiv. of 3 and 1.0 equiv. of the Lewis acid. *b*Determined by ¹H NMR assay (see the text).

1:1), was confirmed by comparisons of the NMR data with the reported ones. 3c,5 Among the Lewis acids examined, the use of methylaluminum bis(2,6-dimethylphenoxide)⁶ provided the highest diastereoselectivity (89%) to afford *trans*-4 in 76% yield (entry 6). The high *trans* selectivity is explicable as a result that the coordination of 2 to the Lewis acid would reduce the geometrical flexibility of 2, thus making the transition state A thermodynamically more favorable than B.

Encouraged by these observations, we next attempted enantiocontrol by using *chiral* Lewis acids, including (S)-BINOL-derived aluminum⁶ and titanium complexes⁷ (Table 2). Among the chiral Lewis acids examined, the use of the (S)-BINOL-aluminum complex gave the best result, although the %ee was still unsatisfactory. Quite fortunately, however, crystallization of *trans*-4 from the product mixture (entry 1) by adding a mixture of hexane and 2-propanol (v/v = 50:1) was found to afford ca. 20% yield of trans-4 of a remarkably

enhanced optical purity up to 74%ee, suggesting that a sort of optical resolution takes place during the crystallization.

Table 2. The chiral Lewis acid-promoted reactions of 2 and 3^a

Entr	y Lewis Acid	Time / h	Yield / %	cis-4:trans-4 (%ee)b
1	EtAl.	43	76	11 : 89 (16) : (26) [74] ^c
2	"(S)-BINOL-Ti-Oxo"	d	100	24 : 76 (17) : (9)
3	(S)-BINOL-Ti(O ⁱ Pr) ₂	52	51	18:82 (3):(1)
4	Bn N Ts	28	49	20:80 (0):(1)

^aAll reactions were run under the same conditions as described in Table 1. ^bDetermined by HPLC analysis using a Daicel chiralcel OD column [4.6 mm x 25 cm, eluent: 2% 2-propanol in hexane, flow rate: 0.5 ml min-1]. ^cSee the text. ^dThe reaction was run at -78 °C for 23 h and then at -30 °C for 7 h.

Finally, it should be noted that any attempts to make this reaction catalytic by using the chiral Lewis acids shown in Table 2 were unsuccessful. For instance, the reaction at -78 °C in the presence of 10 mol% of the (S)-BINOL-derived ethylaluminum complex gave the cycloadducts in less than 10% yield. When the catalytic reaction was carried out at -30 °C, the cycloadducts were obtained quantitatively, but in essentially racemic forms.⁸

In summary, we have developed the Lewis acid-promoted hetero-Diels-Alder reactions which provide a 1β -methyl-carbapenem intermediate in high diastereoselectivity and moderate enantioselectivity. We continue to search for an efficient asymmetric catalyst for the hetero-Diels-Alder reaction.

The authors thank Takasago International Corp. for providing reactant 2 and Dr. Noboru Sayo of the company for his helpful discussions. This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science and Culture, Japan.

References and Notes

JSPS Postdoctral Fellow, 1994-1996.

- 1 D. H. Shih, F. Backer, L. Cama, and B. G. Christensen, *Heterocycles*, 21, 29 (1984).
- 2 For a pertinent list of references, see: N. Tsukada, T. Shimada, Y. S. Gyoung, N. Asao, and Y. Yamamoto, J. Org. Chem., 60, 143 (1995); H. Itani and S. Uyeo, Synlett, 1995, 213; H. Ishibashi, K. Kodama, C. Kameoka, H. Kawanami, and M. Ikeda, Synlett, 1995, 912; H. Ishibashi, C. Kameoka, K. Kodama, and M. Ikeda, Synlett, 1995, 915; T. Fujisawa, R. Hayakawa, and M. Shimizu, Chem. Lett., 1995, 1013; and references cited therein.
- 3 a) R. Bayles, A. P. Flynm, R. H. B. Galt, S. Kirby, and R. W. Turner, *Tetrahedron Lett.*, 29, 6341 (1988); b) R. Bayles, A. P. Flynm, R. H. B. Galt, S. Kirby, and R. W. Turner, *Tetrahedron Lett.*, 29, 6345 (1988); c) R. Bayles, A. P. Flynm, and R. W. Turner, *European Patent EP*, 230, 771 (1991).
- 4 In our hands, the thermal reaction in toluene at -30 °C gave a 46:54 mixture of *cis* and *trans*-4.
- 5 The NMR data for the diastereomeric pair of 4 are as follows. Trans-4: ¹H NMR (CDCl₃, 300 MHz), δ 1.01 (d, J = 7.1 Hz, 3H), 1.22 (t, J = 7.0 Hz, 3H), 1.28 (t, J = 7.0 Hz, 3H), 2.33 (s, 3H), 2.41 (dq, J = 1.1, 6.8 Hz, 1H), 3.54 (q, J = 7.0 Hz, 2H), 3.65 (s, 3H), 3.66 (q, J = 7.0 Hz, 2H), 5.07 (dd, J =1.1, 9.8 Hz, 1H), 6.90 (d, J = 9.8 Hz, 1H), 7.35 - 7.51 (m, 3H), 7.72 (m, 2H); 13 C NMR (CDCl₃, 75 MHz), δ 13.2, 14.9, 15.3, 19.4, 36.8, 47.5, 51.4, 56.8, 58.1, 103.0, 114.2, 126.6, 128.4, 131.0, 134.7, 162.1, 165.2, 167.7. Cis-4: ¹H NMR (CDCl₃, 300 MHz), δ 1.09 (d, J = 7.1 Hz, 3H), 1.22 (t, J = 7.0 Hz, 3H, 1.28 (t, J = 7.0 Hz, 3H), 2.29 (s, 3H), 2.41(dq, J = 1.1, 6.8 Hz, 1H), 3.54 (q, J = 7.0 Hz, 2H), 3.65 (s, 3.65)3H), 3.66 (q, J = 7.0 Hz, 2H), 5.32 (dd, J = 5.5, 10.2 Hz, 1H), 6.80 (d, J = 10.2 H, 1H), 7.35 - 7.51 (m, 3H), 7.72 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz), δ 9.7, 15.1, 15.5, 19.5, 35.2, 45.6, 51.3, 57.0, 59.7, 104.8, 114.4, 126.6, 131.1, 131.2, 135.0, 163.4, 166.1, 167.6.
- 6 The bis(phenoxy)aluminum complexes were prepared according to the literature procedure: K. Maruoka, T. Itoh, M. Sakurai, K. Nonoshita, and H. Yamamoto, *J. Am. Chem. Soc.*, **110**, 3588 (1988).
- 7 The BINOL-derived titanium complexes were prepared according to our reported procedures: D. Kitamoto, H. Imma, and T. Nakai, *Tetrahedron Lett.*, **36**, 1861 (1995). The chiral boron complex has been reported to serve as an efficient asymmetric catalyst for some Diels-Alder reactions: J.-P. G. Seerden, J. W. Scheeren, *Tetrahedron Lett.*, **34**, 2669 (1993).
- 8 For instance, *trans-4* obtained from the reaction catalyzed by "(S)-BINOL-Ti-Oxo" (10 mol%) was of only 4%ee.